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Points and Spheres. One possible approach is to

transform collections of  points and spheres into 

collections of  spheres only:

• For each pair of  points in the collection, use a sphere in the collection to find a unique 

circle orthogonal to the sphere that passes through both the points.

• Use this circle to find a unique sphere orthogonal to the circle, intersecting the circle at 

the two points.

• If  the newly formed collections of  spheres satisfies the independent rigidity 

requirements above, then there is a Möbius transformation taking one original collection 

to the other. 

• Note: Points in collection cannot lie on spheres in original collection.

Independence of Circles
• A collection of  𝑁 − 2 -spheres in 𝕊𝑁−1 ⊂ ℝ𝑁+1 is independent if  their corresponding Lorentz vectors are linearly 

independent.

• Lemma. Let {𝐶1, … , 𝐶𝑛+1} be a collection of  fixed independent spheres in 𝕊𝑛−1 ⊂ ℝ𝑛+1. For spheres 𝐶 and 𝐶′, 
𝐶𝑖 , 𝐶 = 𝐶𝑖 , 𝐶

′ ∀𝑖 ⇔ 𝐶 = 𝐶′.
• Analogous to:

Infinite choices    Two choices              One choice      

Rigidity of Configurations of Lorentz Vectors
Theorem. Let {𝑣𝛼: 𝛼 ∈ 𝒜} and  {𝑣𝛼

′ : 𝛼 ∈ 𝒜} be two collections of  vectors in ℝ𝑛+1, 

indexed by the same set, with at least n+1 elements {𝑣𝑖} and {𝑣𝑖
′}, respectively, that 

form linearly independent sets. Then 𝑣𝛼 , 𝑣𝑖 = 𝑣𝛼
′ , 𝑣𝑖

′ for 𝑖 = 1,… , 𝑛 + 1 if  and 

only if  there is a Lorentz transformation 𝑓 such that 𝑓 𝑣𝛼 = 𝑣𝛼′ for each 𝛼 in 𝒜.

Remark. Independence greatly reduces the amount of  necessary conformal invariant 

information to gain rigidity in each geometric interpretation.

Geometric Interpretations
Spheres. Two collections of  𝑛 − 2 -spheres in

𝕊𝑛−1 ⊂ ℝ𝑛+1, {𝐶𝛼} and 𝐶𝛼
′ , with independent

subcollections. 𝐶𝑖 𝑖=1
𝑛+1 and 𝐶𝑖

′
𝑖=1
𝑛+1 are Möbius

equivalent if  and only if  𝐶𝛼 , 𝐶𝑖 = (𝐶𝛼
′ , 𝐶𝑖

′) for

𝑖 = 1,… , 𝑛 + 1.

Points. Two collections {𝑝𝛼} and {𝑝𝛼
′ } of  points in ℝ∞

𝑛−1 with independent subcollections of  

n + 1 points have a Möbius transformation taking one to another if  and only if

𝑝1, 𝑝2, 𝑝3, 𝑝𝛼 = |𝑝1
′ , 𝑝2

′ , 𝑝3
′ , 𝑝𝛼

′ | for chosen 𝑝1, 𝑝2, 𝑝3 in the independent subcollection.
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Abstract
The rigidity of  collections of  ideal points and collections of  circles in two 

dimensions is proven by Beardon and Minda using a maximal amount of  

conformal invariant information. Crane and Short do the same for 

collections of  ideal points and spheres in higher dimensions. In order to 

uniquely place collections of  ideal points in ℝ∞
𝑛 , the cross ratio of  every 4-

tuple of  points must be known. Similarly, rigidity of  a collection of  spheres 

in ℝ∞
𝑛 uses the inversive distance between every pair of  spheres. When these 

configurations are additionally required to have an independent 

subcollection, the amount of  necessary conformal invariant information is 

considerably decreased by way of  basic linear algebra in Lorentz space. We 

also consider ways to generalize to rigidity of  collections of  points and 

spheres together, touch upon the role of  independence in rigidity of  

inversive distance circle packings, and its potential utility in rigidity of  

projective polyhedra.

Conformal Invariants
Inversive distance (𝐶, 𝐶′) is a real number equipped to two circles (or 

spheres, in higher dimensions), 𝐶 and 𝐶′(for more info, see [1]). It is…

• An invariant under Möbius transformations. 

• Not a true distance: 

➢ Does not satisfy the triangle

inequality

➢ Can be negative. 

• A tool commonly used in

circle configurations.

The Absolute cross ratio

|𝑎, 𝑏, 𝑐, 𝑑| is a real number

equipped to four points a, 𝑏, 𝑐, 𝑑
in ℝ∞

𝑁 , given by the formula

𝑎, 𝑏, 𝑐, 𝑑 =
𝑎−𝑏 𝑐−𝑑

𝑎−𝑐 𝑏−𝑑
. 

• It is also invariant under

Möbius transformations.

Motivation
Beardon and Minda in [2] showed:

• In ℂ∞, two collections of  finitely many

disjoint disks have a Möbius

transformation taking one collection to

the other if  and only if  each 

corresponding pair of  disks in the 

collections has equal inversive distance.

• For two collections of  finitely many points

in ℂ∞, there is a Möbius transformation

taking one collection to the other if  and

only if  each corresponding 4-tuple of

points has equal absolute cross ratio.

Crane and Short build on this in [3] by

generalizing each of  Beardon and Minda’s

results:

• (𝑁 − 1)-spheres in ℝ∞
𝑁 and points in ℝ∞

𝑁 . 

• Spheres may intersect, 

• Collections may be countably infinite.

Both sets of  results utilize a maximal amount of  conformal invariant 

information. Rigidity can be achieved with less conformal invariant 

information with an appropriate additional condition. 

Lorentz Space Correspondences
• ℝ𝑛+1, together with the Lorentz inner product 𝑢, 𝑣 = 𝑢1𝑣1 +⋯+ 𝑢𝑛𝑣𝑛 − 𝑢𝑛+1𝑣𝑛+1 , for two vectors 𝑢 and 𝑣, is called 

Lorentz space. Lorentz subspaces are space-like if  they don’t intersect the light cone, light-like if  they are tangent to the light 

cone, and time-like otherwise.

• Möbius transformations in 𝕊𝒏−𝟏: SO+ 𝑛, 1 ≅ Isom+(ℍ𝑛) ≅ M ሷob(𝕊𝑛−1)

Future Research

References
1. Bowers, P. & Hurdal, M. (2002). An Inversive Distance Primer. Planar 

Conformal Mappings of  Piecewise Flat Surfaces.  (pp. 7-12)

2. Beardon, A., & Minda, D. (2008). Conformal automorphisms of  finitely 

connected regions. In P. Rippon & G. Stallard (Eds.), Transcendental 

Dynamics and Complex pp. 37-73.

3. Crane, E., & Short, I. (2009). Rigidity of  configurations of  balls and points 

in the N-sphere. 

4. Ratcliffe, J. (1994). Foundations of  Hyperbolic Manifolds.

5. Bowers, J., Bowers, P. (2018). Ma-Schlenker C-Octahedra in the 2-Sphere.

6. Andre’ev, E, (1970). On Convex Polyhedra in Lobačevskiĭ Space., Mat. 

Sbornik. 81(123), pp.445-478.

7. Rivin, I., & Hodgson, C., (1993). A Characterization of  Compact Convex 

Polyhedra in Hyperbolic 3-Space, Inven. Math., 111:77-111.

8. Rivin, I., (1996). A Characterization of  Ideal Polyhedra in Hyperbolic 3-

Space, Ann. of  Math., 143:51-70.

9. Bao, X., & Bonahon, F., (2002). Hyperideal polyhedra in hyperbolic 3-

space. Bull. Soc. Math. France, 130(3): 457-491.

10. Bowers, J., Bowers, P., & Pratt, K. (2017). Rigidity of  Circle Polyhedra in 

the 2-Sphere and of  Hyperideal Polyhedra in Hyperbolic 3-Space.

𝑎 𝑎

𝑏 𝑏
𝑎 𝑏 𝑐

𝕊𝑛−1

𝕊𝑛−1

∃ 𝑓 ∈ M ሷob 𝕊𝑛−1

𝜃
𝜃

𝜃 = 0 𝜃 = 𝜋

0 ≤ 𝐶, 𝐶′ = cos 𝜃 < 1

𝐶, 𝐶′ = 1 𝐶, 𝐶′ = −1

−1 < 𝐶, 𝐶′ = cos 𝜃 ≤ 0

𝑑𝐻(𝑥, 𝑦)

−∞ < 𝐶, 𝐶′ < −1

𝑑𝐻(𝑥, 𝑦)

𝕊2

𝕊2

∃ 𝑓 ∈ M ሷob 𝕊2

𝐶𝑖 𝐶𝑗

𝐶𝑖
′

𝐶𝑗
′

ℝ𝑛+1

𝕊𝑛−1

ℝ𝑛

ℍ𝑛

ℝ𝑛+1

𝕊𝑛−1

ℝ𝑛

ℍ𝑛

• (𝑛 − 2)-spheres in 𝕊𝑛−1 ↔
• Time-like Lorentz 

subspaces of  ℝ𝑛+1 ↔
• Space-like Lorentz vectors

Fact: The Lorentz inner product of  

two space-like vectors is equal to 

inversive distance of  the 

corresponding 𝑛 − 2 -spheres.

• Ideal points in 𝕊𝑛−1 ↔
• Light-like Lorentz 

Subspaces ↔
• Light-like Lorentz vectors

Fact: For four ideal points 

𝑎, 𝑏, 𝑐, 𝑑, 

𝑎, 𝑏, 𝑐, 𝑑 =
𝑣𝑎,𝑣𝑏 𝑣𝑐,𝑣𝑑

𝑣𝑎,𝑣𝑐 𝑣𝑏,𝑣𝑑
, 

where 𝑣𝑎 , 𝑣𝑏 , 𝑣𝑐 , 𝑣𝑑 are 

chosen light-like vectors 

intersecting their respective 

points.

ℝ𝑛+1
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∃ 𝑓 ∈ SO+ (𝑛, 1)

1. Inversive Distance Circle Packings (IDCPs) are

configurations of  circles on 𝕊2 with an underlying 

triangulation encoding inversive distance 

information. 

• IDCPs are not globally rigid in general:

➢ Bowers and Bowers provide a 

counterexample in [5] using an octahedral 

graph.

➢ By adding in extra inversive distance 

information strategically, independence can 

be used to “rigidify” the collection of  

circles. 

2. Projective polyhedra correspond to circle configurations in 𝕊2 called 

circle polyhedra. The rigidity of  projective polyhedra up to Lorentz 

transformations is not yet fully known, although several cases have been 

classified (see below). Conditions involving independence imposed on circle 

polyhedra may be the right requirements to gain uniqueness, which will, in 

turn, yield uniqueness of  projective polyhedra.

𝐶

𝐶′
𝐶, 𝐶′

Hyperbolic polyhedra :

• Andre’ev [6]

• Rivin & Hodgson 

[7]▼

▲Ideal Polyhedra:

Rivin [8]

Hyperideal polyhedra :

• Bao & Bonahon [9]

• Bowers, Bowers, 

Pratt [10]▼

1 < 𝐶, 𝐶′ < ∞


